Abstract

In this Letter, we report on the fabrication and characterization of a monolithic III-V semiconductor photonic chip, designed to perform nonlinear parametric optical processes for frequency conversion and non-classical state generation. This chip co-integrates an AlGaAs microdisk that is evanescently coupled to two distinct suspended waveguides designed for light injection and collection around 1600 nm and 800 nm, respectively. Quasi-phase matching provided by the resonator geometry and material symmetry, resonant field enhancement, and confinement ensure efficient nonlinear interactions. We demonstrate second-harmonic generation efficiency of 5%W-1 and a biphoton generation rate of 1.2 kHz/µW through spontaneous down-conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.