Abstract

The huge amount of data that needs to be transferred between probe and imaging system becomes a major issue when the data transfer capacity is limited, e.g. in handheld systems, wireless probes and miniaturized probes. The amount of data can be significantly reduced by using two-stage beamforming. The first stage consists of a fixed focus algorithm that compresses channel data to scanline data. This can be done by integrated electronics in the handle. In the second stage the scanline data is further beamformed in the imaging system to obtain images that are synthetically focused at all depths. Here we present a wave equation two-stage beamforming method for phased array imaging that is computationally efficient and outperforms PSASB, a time-of-flight alternative, in terms of lateral resolution and contrast-to-noise ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.