Abstract

As the existing fleets of nuclear power plants age, a greater emphasis has been placed on technologies to quantify the remaining useful life of safety-critical components and to ensure that these systems will operate as intended when called upon, especially in emergency situations. Some of the most important, yet often overlooked components, are the cables that provide the signal paths for instrumentation and control systems used to ensure safe and efficient operation of nuclear power plants. Instrumentation and control cable aging, in particular, is primarily concerned with degradation of the polymer material by thermal oxidation while exposed to heat, humidity, radiation, and other environmental stressors. Consequently, as the polymer becomes embrittled, it cracks and becomes susceptible to moisture intrusion that can cause shorts and shunts in the cable circuits. This article describes the development of two prognostic models to estimate the remaining useful life of nuclear power plant cables. The first model uses data compiled in an existing polymer aging database as background for introducing the remaining useful life model development methodology. The second model uses data generated from accelerated cable aging experiments performed by the authors and explores the use of in situ electrical measurements such as frequency domain reflectometry for predicting the remaining useful life of instrumentation and control cables typically found in nuclear power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.