Abstract
In this paper, we formalize a general Frequency Domain Packet Scheduling (FDPS) problem for 3GPP LTE Downlink (DL). The DL FDPS problem incorporates the Single-User Multiple Input Multiple Output (SU-MIMO) technique, and can express various scheduling policies, including the Proportional-Fair metric, the MaxWeight scheduling, etc. For LTE DL SU-MIMO, the constraint of selecting only one MIMO mode (transmit diversity or spatial multiplexing) per user in each transmission time interval (TTI) increases the hardness of the FDPS problem. We prove the problem is MAX SNP-hard, which implies approximation algorithms with constant approximation ratios are the best we can expect. Subsequently, we propose an approximation algorithm of polynomial runtime. The solution is based on a greedy method for maximizing a non-decreasing submodular function over a matroid. The algorithm can solve the general DL FDPS problem with an approximation ratio of 4. We implement the proposed algorithm and compare its performance with other well-known schedulers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.