Abstract

An efficient method based on the evolutionary programming (EP) technique is proposed for inverse profiling of 2-D buried dielectric objects with elliptical cross sections. In particular, EP with Cauchy mutation operator (EP-CMO), as its first reported implementation to inverse problems, is utilized as a stochastic optimization tool for quantitatively reconstructing buried objects. Moreover, the method of moments technique in conjunction with conjugate gradient-fast Fourier transform method is used, as a fast and simple frequency domain forward solver, in each iteration of the proposed method. Numerical results for different case studies are presented and analyzed. To assess the proposed EP-CMO method, the results are also compared statistically with that of three other well-known optimization techniques, namely, EP with Gaussian mutation, particle swarm optimization, and genetic algorithms. The results reveal that EP-CMO is a significantly more robust and efficient optimization tool in reconstruction of this class of buried objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.