Abstract

This contribution focuses on the area of modal analysis and studies the applicability of total least-squares (TLS) algorithms for the estimation of modal parameters in the frequency-domain from input–output Fourier data. These algorithms can be preferable to classical frequency response function based curve-fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an accurate modal parameter estimation by the integration of this noise model in the parametric identification process. Modal-based design and comfort improvement, damage assessment and structural health monitoring, and finite element model updating are important applications that strongly rely on a high accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier data and is evaluated by means of Monte Carlo simulations and experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.