Abstract

In frequency domain, the fundamental solutions for a poroelastic half-space are re-derived in the context of Biot’s theory. Based on Biot’s theory, the governing field equations for the dynamic poroelasicity are established in terms of solid displacement and pore pressure. A method of potentials in cylindrical coordinate system is proposed to decouple the homogeneous Biot’s wave equations into four scalar Helmholtz equations, and the general solutions to these scalar wave equations are obtained. After that, spectral Green’s functions for a poroelastic full-space are found through a decomposition of solid displacement, pore pressure, and body force fields. Mirror-image technique is then applied to construct the half-space fundamental solutions. Finally, transient responses of the half-space to buried point forces are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.