Abstract
An extensive set of electrical conductivity measurements of human lymphocyte suspensions has been carried out in the frequency range from 1 kHz to 100 MHz, where the surface polarization due to the Maxwell-Wagner effect occurs. The data have been analyzed according to well-established heterogeneous system theories and the passive electrical parameters of both the cytoplasmic and nuclear membranes have been obtained. Moreover, a further analysis to take into account the roughness of the membrane surface on the basis of a fractal model yields new estimates for the membrane conductivity and the membrane permittivity, independently of the surface architecture of the cell. These findings are confirmed by measurements carried out at higher frequencies, in the range from 1 MHz to 1 GHz, on lymphocytes dispersed in both hyperosmotic and hypoosmotic media, that influence the surface complexity of the membrane due to the microvillous protusions. The surface roughness of the cell is described by a macroscopic parameter (the fractal dimension) whose variations are associated to the progressive swelling of the cell, as the osmolality of the solution is changed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.