Abstract
AbstractThe frequency-domain seismic modeling has advantages over the time-domain modeling, including the efficient implementation of multiple sources and straightforward extension for adding attenuation factors. One of the most persistent challenges in the frequency domain as well as in the time domain is how to effectively suppress the unwanted seismic reflections from the truncated boundaries of the model. Here, we propose a 2D frequency-domain finite-difference wavefield simulation in elastic media with hybrid absorbing boundary conditions, which combine the perfectly matched layer (PML) boundary condition with the Clayton absorbing boundary conditions (first and second orders). The PML boundary condition is implemented in the damping zones of the model, while the Clayton absorbing boundary conditions are applied to the outer boundaries of the damping zones. To improve the absorbing performance of the hybrid absorbing boundary conditions in the frequency domain, we apply the complex coordinate stretching method to the spatial partial derivatives in the Clayton absorbing boundary conditions. To testify the validity of our proposed algorithm, we compare the calculated seismograms with an analytical solution. Numerical tests show the hybrid absorbing boundary condition (PML plus the stretched second-order Clayton absorbing condition) has the best absorbing performance over the other absorbing boundary conditions. In the model tests, we also successfully apply the complex coordinate stretching method to the free surface boundary condition when simulating seismic wave propagation in elastic media with a free surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.