Abstract

This paper provides a unified approach for achieving and analyzing global synchronization of a class of master-slave coupled multiscroll chaotic systems under linear state-error feedback control. A general mathematical model for such a class of multiscroll chaotic systems is first established. Based on some special properties of such systems, two less-conservative frequency-domain criteria for the desirable global synchronization are rigorously proven by means of the absolute stability theory. The analysis is then applied to two master-slave coupled modified Chua's circuits, obtaining the corresponding simple and precise algebraic criteria for global synchronization, which are finally verified by numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call