Abstract
A dynamical system is called globally asymptotically stable if it has a unique equilibrium point which attracts every trajectory in state space. As a consequence its steady state response is insensitive to initial conditions and then depends only on the input. In this paper some criteria are presented for the global asymptotic stability of cellular neural networks (CNNs), concerning both discrete-time and continuous-time dynamics. The proposed criteria represent necessary and sufficient conditions that can easily be checked by computing the discrete Fourier transform of the template elements. For this reason they have been called frequency domain stability criteria. These criteria provide milder constraints on the template coefficients than required in existing results for general recurrent neural network models. © 1997 by John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Circuit Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.