Abstract

Multi-lump and distributed parameter models are used to analyze the frequency behavior of a pressurized water reactor (PWR). The distributed parameter model is built upon the partial differential equations describing heat transfer and fluid flow in the reactor core. For comparison, a lumped parameter reactor core model with multiple fuel and coolant lumps is employed. The features of the transfer functions for both models are evaluated. The distributed parameter model has the ability to offer an accurate transfer function at any location throughout the reactor core. In contrast, the multi-lump parameter model only provides an average value in a given region (lump). Comparisons show that the multi-lump model results are only most favorable for frequencies less than ~0.1 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call