Abstract
Non-linear dynamic systems respond at frequencies other than the excitation frequency; however, standard frequency response function estimators for linear systems do not accommodate this harmonic distortion. A new multi-harmonic frequency response function estimator that utilizes discrete frequency models for non-linear systems is introduced here. The multi-harmonic estimator relates the frequency response at each frequency to the input and output spectra within a given frequency band in the same way that autoregressive exogenous input models relate inputs and outputs at particular samples in the time domain. Overdetermined, least-mean-squares calculations are used to minimize model error throughout a frequency band rather than at a single frequency as in the corresponding linear estimators. The resulting multi-harmonic frequency response function models are non-parametric (e.g., vary with amplitude) when linear functions are used and parametric when non-linear functions are used. A new sensitive indicator for experimentally characterizing non-linearity is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.