Abstract
In this work we examine the performance of iterative learning control (ILC) for systems with non-repeating disturbances and random noise. Single-input, single- output linear time-invariant systems and iteration-invariant learning filters are considered. We find that a tradeoff exists between the convergence rate and converged error spectrum. Optimal filter designs, which are dependant on the disturbance and noise spectra, are developed. We also present simple design guidelines for the case when explicit models of disturbance and noise spectra are not available. A numerical design example is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.