Abstract

The space gravitational wave detector uses the inter-satellite laser interferometer to measure a change in distance with ultra-high precision at the picometer level. Its special differential wavefront sensing technology based on laser interference is used to obtain the ultra-high-precision relative attitude between spacecrafts. In order to acquire the measurement, it is necessary to maintain high-precision attitude pointing and alignment for the optical path line-of-sight of the detector. This paper proposes a frequency division control method. More specifically, we chose the telescope attitude control loop frequency division as it is the faster response part, mainly relative to the high-frequency band within the measurement bandwidth. The spacecraft attitude frequency division is mainly in the low-frequency band within the measurement bandwidth. Finally, a high-precision simulation analysis is carried out. The results show that compared with traditional methods, the use of frequency division control design can significantly improve the attitude and pointing stability of the system and provide control support for systems requiring high pointing coordination accuracy, such as space gravity wave detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.