Abstract

This paper addresses the problem of frequency diverse array (FDA) signal design for target localization in both non-cognitive and cognitive radars. For the non-cognitive case, the Cramr-Rao bound (CRB) for target localization in FDA radar is derived and optimized with respect to the transmit signal parameters. It is shown that FDA transmission introduces coupling between range and direction-of-arrival (DOA) estimation, and that the DOA estimation accuracy can be improved by increasing the signal bandwidth. Since the CRB ignores the threshold phenomenon, we propose to minimize it under a constraint which assures that the steered gain toward the target yields sufficiently large output signal-to-noise ratio (SNR). This method together with the FDA transmission properties establish the basis for developing the proposed cognitive FDA configuration, which is derived in the Bayesian approach. Based on the Bayesian CRB (BCRB) and the expected CRB (ECRB) for target localization, we propose a new criterion called the semi-ECRB (SECRB), and we prove that it is higher than the BCRB and lower than the ECRB. The SECRB is optimized with respect to the FDA signal parameters subject to mean SNR constraint. The target localization performances of the proposed methods in the non-cognitive and cognitive problems are analyzed via simulations and it is shown that they exhibit superior performance in terms of both threshold behavior and estimation accuracy, compared to other transmission methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.