Abstract

On electrical stimulation of a peripheral motor nerve, a delayed and reduced F-response is obtained, which is known to occur due to random backfiring of a few percent of the motor nerve fibres at the spinal end after antidromic conduction. F-latencies obtained from multiple stimulations vary in latency, size and shape because of this randomness. We hypothesised that, being a random process, recruitment of fibres for F-response would depend on the distribution of conduction velocity (DCV) for motor nerve fibres directly, and therefore, a frequency distribution of F-latencies (DFL) from such multiple F-responses would be an approximate mirror image of DCV, latency being inversely proportional to velocity. First, obtaining DFL from many human subjects, we have shown that this is a reproducible parameter for a nerve trunk of a subject, and hence reveals a new physiological phenomenon. DFL has a single peaked distribution, which is also expected for the DCV of a normal healthy motor nerve. To validate its hypothesised relationship to DCV further, DFLs were obtained from both median nerves of patients with unilateral carpal tunnel syndrome (CTS). The patterns of DFL from both sides remained almost the same except for a delay shift equal to that in between the two M-responses, which lends support to this hypothesis. DFL, and DCV as its suggested mirror image, appear to change systematically with certain known disorders such as cervical spondylosis, even at a subclinical stage, which needs further study. This also indicates that DFL may become a new and improved investigative diagnostic tool in neurophysiology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call