Abstract

An optical dispersion analysis and measurement technique based on frequency derivatives of the Jones matrix is presented. This approach enables measurement of all scalar and polarization-dependent phase and amplitude dispersion effects over a broad wavelength range in a single sweep. Owing to its differential nature, it can be more accurate than techniques that calculate dispersion by comparing phase and amplitude measurements from adjacent wavelengths in a sweep. The method involves measuring eight elementary parameters related to the frequency derivative of the Jones matrix. An experimental setup and data analysis methods for measuring the elementary parameters are presented. Three optical devices exhibiting various dispersive effects are tested, and the ability to measure all the elementary parameters is demonstrated. Elementary parameter estimation error is 1-2 ps in this proof-of-concept experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call