Abstract
Abstract The frequency-dependent viscoelasticity of Chinese fir (Cunninghamia lanceolata) during moisture desorption was investigated and the applicability of the time-moisture superposition (TMS) relation on wood stiffness and damping during the moisture desorption was verified. The hygrothermal conditions for the moisture desorption were set up as six constant temperatures ranging from 30 to 80°C and three relative humidity (RH) levels at 0, 30 and 60%. Due to the elimination of water during the moisture desorption, the stiffness of the Chinese fir increased, whereas the damping decreased. With the increase in frequency, increased stiffness and decreased damping were observed. Utilizing the TMS relation, it was possible to construct master curves of wood stiffness at temperatures ranging from 30 to 80°C. The linear relationship between the shift factor and the moisture content (MC) manifested a low intermolecular cooperativity between the polymers and a narrow relaxation window. However, the TMS relation was not able to predict the wood damping properties during the moisture desorption, because wood is a multi-relaxation system. The non-proportional relationship between the free volume and MC during the moisture desorption may also explain why the TMS relation failed to construct master curves of the wood damping properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.