Abstract
How and where hippocampal-neocortical interactions required for memory formation take place is a major issue of current research. Using a combined in vivo functional magnetic resonance imaging/electrophysiology approach, we have investigated whether specific frequencies of CA3 neuronal activation, inducing different forms of short-term plasticity at CA1 synapses, contribute to differential activity propagation in brain-wide networks connected to the hippocampus. We report that localized activation of CA3 neurons in dorsal hippocampus produced activity propagation within the hippocampal formation, including the subiculum and entorhinal cortex, which increased monotonically with frequency to a maximum at 20-40 Hz. However, robust extrahippocampal propagation was seen specifically at theta-beta frequencies (10-20 Hz), reaching a network of midline neocortical and mesolimbic structures. Activation in those regions correlated with a frequency-dependent facilitation of spiking activity recorded in CA1. These results provide a mechanistic link between the dynamic properties of short-term plasticity in the efferent synapses of CA3 neurons in CA1 and activity propagation in brain-wide networks, and identify polysynaptic information channels segregated in the frequency domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.