Abstract

The complex electrical properties of poly crystalline San Carlos olivine compacts were measured over the range of frequency l0−4–104Hz from 800° to 1400°C under controlled oxygen fugacity. The impedance data display a strong frequency dependence that is evidenced most clearly when the results are displayed in the complex impedance plane. A parameterized model of the frequency dependent electrical response using equivalent electrical circuits is presented. Two distinct conduction mechanisms of the sample are observed: grain interior and grain boundary conduction. Each occurs over a different range of frequency. The resistance of each mechanism adds in series resulting in a lower total DC conductivity for polycrystalline olivine than for either mechanism separately. The total DC conductivity is dominated by the grain interior conductivity above 1200°C, whereas the grain boundary conductivity has the strongest influence below 1000° C. Impedance spectra of natural dunite samples exhibit a similar type of frequency dependence. The grain interior conductivity displays a change in slope at 1344°C and has activation energies of 1.45 eV (800°–1344°C) and 4.87 eV (>1344°C). The grain boundary conductivity has an activation energy of 2.47 eV. In these cases, the ƒO2 for each experimental run was controlled at that of the wustite‐magnetite oxygen buffer. Experiments on samples with different grain sizes reveal no dependence of DC conductivity on grain size for either mechanism, although the relaxation time and real relative permittivity of the grain boundary mechanism are dependent on grain size. Because of the electrical response observed at low frequencies, care must be taken in the inversion of electromagnetic field observations using laboratory measurements made in the kilohertz range since they may not be the same as DC measurements. Impedance measurements must be performed over a range of relatively low frequencies to assess the role of grain boundaries on the overall electrical response of polycrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.