Abstract

We present a formalism to calculate finite-frequency current correlations in interacting nanoscopic conductors. We work within the $n$-resolved density matrix approach and obtain a multitime cumulant generating function that provides the fluctuation statistics solely from the spectral decomposition of the Liouvillian. We apply the method to the frequency-dependent third cumulant of the current through a single resonant level and through a double quantum dot. Our results, which show that deviations from Poissonian behavior strongly depend on frequency, demonstrate the importance of finite-frequency higher-order cumulants in fully characterizing transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.