Abstract
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.
Highlights
Sleep is supposed to be beneficial to synaptic renormalization that is sustainable and ensures homeostatic changes in brain’s symphony [1]
In order to test the effects of sleep deprivation on the short-time memory, sixteen subjects performed semantic discrimination task before fMRI scanning in rested wakeful night (RW) and Sleep deprivation (SD) conditions
The amplitude of low-frequency fluctuation (ALFF) strength was lower in SD group, comparing with the RW control, the results may indicate a global change of spontaneous brain activity pattern (Fig. 1 and S1 Fig.)
Summary
Sleep is supposed to be beneficial to synaptic renormalization that is sustainable and ensures homeostatic changes in brain’s symphony [1]. Sleep deprivation (SD) has been associated with deteriorative attention, memory, decision making and executive function [2,3,4,5,6,7,8,9, 10,11]. Multiple observations of altered connectivity intra- and inter- various resting-state networks have been reported for SD [12,13,14,15,16,20,21,22]. Such findings suggest that SD disturbs ongoing patterns of resting-state activity for internal processing of information
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.