Abstract

In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent [Formula: see text] parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited [Formula: see text] function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing [Formula: see text] from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order [Formula: see text] approximation and [Formula: see text] computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and [Formula: see text], a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure [Formula: see text] from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.