Abstract

A study on the vibrational dynamics of the NH stretching mode of pyrrole-base complexes in carbon tetrachloride, using subpicosecond infrared pump-probe (PP) spectroscopy, is reported. The time evolution of the PP signal of the NH stretching mode for all the complexes was frequency-dependent; the signal decay time increased with the frequency. This frequency dependence was thought to originate from the relationship between vibrational energy relaxation (VER) and spectral diffusion. For hydrogen-bonded systems, spectral diffusion corresponds to the reorganization of the solvent environment. Qualitative analysis of the frequency dependence of the PP signal decay time indicated that a simple energy gap law could not be applied to all the pyrrole-base complexes. This conclusion was supported by spectral simulation of the PP signal using the modified Smoluchowski equation to clarify the frequency dependence of the VER and the spectral diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.