Abstract
In this work we have performed the relaxation studies “ in situ” of the electron instability effect (EIE) in the heterostructures based on BSCCO single crystals. The new effect of suppression of EIE or colossal electroresistance via application of an alternating low frequency electric field to the heterojunctions in the BSCCO-based single crystals has been found. It has been shown that the top possible frequencies for observation of the effect are of the order of 10 3 Hz. This fact is interpreted as accumulation of the oxygen ions driven by the electric field to the interface. On the other hand, it has been shown that the switching events are limited by two time processes: t ≈ 1 ms and about ten seconds. The first ones are caused by rearrangement of a charge net in the degraded surface at the electric field switching. The latter are caused by oxygen diffusion to vacancies under electric field above some threshold value. The considered experimental data confirm the correlation character of the HTSC properties as Mott systems, which appears in extreme sensitivity to the doping level, in the tendency to phase separation under external actions, in the hysteresis character of the metal–insulator transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.