Abstract

Alternating current mode scanning electrochemical microscopy (AC-SECM) enables local detection of electrochemical surface activity without any redox mediator present in solution. Z-approach curves toward the substrate result in a negative feedback curve of the ac signal for insulating samples. On conducting samples, however, the shape of the feedback curve was found to be dependent on the ac perturbation frequency. Approach curves over a wide range of frequencies were performed, and the results were applied to interpret laterally resolved frequency-dependent measurements obtained with combined atomic force microscopy-AC-SECM (AFM-AC-SECM). For the first time, this frequency dependence of the signal was utilized to fine-tune the electrochemical contrast in lateral imaging in AC-SECM. An array of gold microelectrodes embedded in silicon nitride displaying significant changes in electrochemical activity as well as in topography was investigated using a bifunctional AFM-SECM tip with an integrated recessed ring microelectrode. Due to the unique geometrical conditions the electrochemical contrast between the conducting gold spots and the insulating SixNy is reversed, crosses zero, and inverts as a function of the applied ac frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.