Abstract

Based on the frequency dependence of the power-law distribution of the peak fluxes in 486 radio bursts in 1-35 GHz observed by Nobeyama Radio Polarimeters (see Song et al. in Astrophys. J. 750:160, 2012), we have first suggested in this paper that the events with power-law behaviors may be emitted from the optically-thin regions, which can be considered as a good measure for the flare energy release. This result is supported by that both the power-law and optical-thin events gradually increase with radio frequencies, which are well fitted by a power-law function with similar indices of 0.48 and 0.80, respectively. Moreover, a flare occurrence rate is newly defined by the power-law event number in per unit frequency. Its values in lower frequencies are evidently larger than those in higher frequencies, which just imply that most flares are trigged in higher corona. Hence, the frequency variation of power-law event number may indicate different energy dissipation rates on different coronal heights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.