Abstract

The frequency dependence of scattering by geophysical media at microwave frequencies is an important topic because multifrequency measurements are used in remote sensing applications. In this paper, we study rigorously the frequency dependence of scattering by dense media using Monte Carlo simulations of the three-dimensional solutions of Maxwell's equations. The particle positions are generated by deposition and bonding techniques. The extinction, scattering, and absorption properties of dense media are calculated for dense media of sticky and nonsticky particles. Numerical solutions of Maxwell's equations indicate that the frequency dependence of densely packed sticky small particles are much weaker than that of independent scattering. Numerical results are illustrated using parameters of snow in microwave remote sensing. Comparisons are made with extinction measurements as a function of frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.