Abstract
Corrosion fatigue and fatigue crack growth in air tests were comparatively conducted on an X52 pipelines steel. Fatigue crack growth rates in air were lower than corrosion fatigue crack growth rates due to the absence of hydrogen and mechanical dormancy arisen from low temperature creep at low cyclic frequencies. Mechanical dormancy can commonly occur during operation of both oil and gas pipelines. Crack growth in near neutral pH environments can be well rationalized by a combined loading factor, (ΔK)2Kmax/fα, which reflects the synergistic interaction between the mechanical driving force and the hydrogen effects. Hydrogen plays a decisive role in terms of crack growth in pipelines steels exposed to near neutral pH environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.