Abstract

Frequency entangled photon sources are in high demand in a variety of optical quantum technologies, including quantum key distribution, cluster state quantum computation and quantum metrology. In the recent decade, chip-scale entangled photon sources have been developed using silicon platforms, offering robustness, large scalability and CMOS technology compatibility. Here, we report the generation of frequency correlated photon pairs using a 150-GHz silicon nitride ring cavity. First, the device is characterized for studying the phase matching condition during spontaneous four-wave mixing. Next, we evaluate the joint spectrum intensity of the generated photons and confirm the photon pair generation in a total of 42 correlated frequency mode pairs, corresponding to a bandwidth of 51.25 nm. Finally, the experimental results are analyzed and the joint spectral intensity is quantified in terms of the phase matching condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call