Abstract

One of the ways in which the cell efficiency of solar cells may be improved by better exploitation of the solar spectrum makes use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cutoff phonon energy are mandatory. Glass-ceramics can be a viable system to fulfill these requirements. The main advantage of the glass-ceramic is to combine the mechanical and optical properties of the glass with a crystallike environment for the rare-earth ions, where higher cross-sections of the rare earth ion can be exploited. In the case of silica-hafnia system the glass ceramic is constituted by nanocrystals of HfO 2 , containing the rare earth ion, imbedded in the silica-hafnia host. Hafnia nanocrystals are characterized by a cutoff frequency of about 700 cm-1, so that nonradiative transition rates are strongly reduced, thus increasing the luminescent quantum yield of the rare-earth ions. In this work we investigated the Tb 3+ /Yb 3+ energy transfer efficiency in a 70SiO 2 -30HfO 2 glass-ceramic waveguide in order to convert absorbed photons at 488 nm in photons at 980 nm. The energy transfer efficiency was estimated as a function of the Tb 3+ /Yb 3+ molar ratio as well as of the total amount of rare earth ions. A transfer efficiency of 38% was obtained for Tb 3+ /Yb 3+ = 0.25 mol and a rare earth content [Tb+Yb]/[Si+Hf] = 5% mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.