Abstract

Quantum repeater is a key component of quantum network, and atomic memory is one of the important candidates for constructing quantum repeater. However, the atomic transition wavelength is not suitable for long-distance transmission in optical fiber. To bridge atomic memory and fiber communication, we demonstrate a frequency conversion interface from rubidium D1 line (795 nm) to the optical communication L-band (1621 nm) based on difference frequency generation. To reduce broadband noise of spontaneous Raman scattering caused by strong pumping light, we use a combination of two cascaded etalons and a Fabry-Perot cavity with low finesse to narrow the noise bandwidth to 11.7 MHz. The filtering system is built by common optical elements and is easy to use; it can be widely applied in frequency conversion process. We show that the signal-noise ratio of the converted field is good enough to reduce the input photon number below 1 under the condition of low external device conversion efficiency (0.51%) and large duration of input pulse (250 ns). The demonstrated frequency conversion interface has important potential application in quantum networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.