Abstract

Introduction It is well-known that the natural frequency of nonlinear oscillators, like neurons, can be strongly affected when driven by a periodic force or when embedded in a network [1]. In contrast, the effects of stochastic forces on the frequency of nonlinear oscillators are incompletely understood. In this context, we have mathematically investigated how colored noise and its amplitude affect the firing frequency of neurons. Our result suggests that low-amplitude colored noise may be used in deep-brain stimulation protocols to control neuronal excitability efficiently.

Highlights

  • Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf . It is well-known that the natural frequency of nonlinear oscillators, like neurons, can be strongly affected when driven by a periodic force or when embedded in a network [1]

  • We have mathematically investigated how colored noise and its amplitude affect the firing frequency of neurons

  • Our result suggests that low-amplitude colored noise may be used in deep-brain stimulation protocols to control neuronal excitability efficiently

Read more

Summary

Introduction

It is well-known that the natural frequency of nonlinear oscillators, like neurons, can be strongly affected when driven by a periodic force or when embedded in a network [1]. The effects of stochastic forces on the frequency of nonlinear oscillators are incompletely understood. In this context, we have mathematically investigated how colored noise and its amplitude affect the firing frequency of neurons. Our result suggests that low-amplitude colored noise may be used in deep-brain stimulation protocols to control neuronal excitability efficiently

Methods
Results
Haken H: Advanced Synergetics
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.