Abstract

Octave-wide frequency combs in microresonators are essential for self-referencing. However, it is difficult for the small-size and high-repetition-rate microresonators to achieve perfect soliton modelocking over the broad frequency range due to the detrimental impact of dispersion. Here we examine the stability of the soliton states consisting of one hundred modes in silicon-nitride microresonators with the one-THz free spectral range. We report the coexistence of fast and slow solitons in a narrow detuning range, which is surrounded on either side by the breather states. We decompose the breather combs into a sequence of sub-combs with different carrier-envelope offset frequencies. The large detuning breathers have a high frequency of oscillations associated with the perturbation extending across the whole microresonator. The small detuning breathers create oscillations localised on the soliton core and can undergo the period-doubling bifurcation, which triggers a sequence of intense sub-combs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call