Abstract
Long-range interactions between dark vectorial temporal cavity solitons are induced by the formation of patterns via spontaneous symmetry breaking of orthogonally polarized fields in ring resonators. Turing patterns of alternating polarizations form between adjacent solitons, pushing them apart so that a random distribution of solitons along the cavity length spontaneously reaches equal equilibrium distances, the soliton crystal, without any mode crossing or external modulation. Enhancement of the frequency comb is achieved through the spontaneous formation of regularly spaced soliton crystals, 'self-crystallization', with greater power and spacing of the spectral lines for increasing soliton numbers. Partial self-crystallization is also achievable in long cavities, allowing one to build crystal sections with controllable numbers of cavity solitons separated by intervals of pattern solutions of, again, controllable length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.