Abstract
Density waves in a dusty plasma emerge spontaneously at low gas pressures and high dust densities. These acousticlike wave modes were studied in a radio-frequency discharge under microgravity conditions. The complex three-dimensional wave pattern shows a spatially varying wavelength that leads to bifurcations, i.e., topological defects, where wave fronts split or merge. The calculation of instantaneous wave attributes from the spatiotemporal evolution of the dust density allows a precise analysis of those structures. Investigations of the spatial frequency distribution inside the wave field revealed that the wave frequency decreases from the bulk to the edge of the cloud in terms of frequency jumps. Between those jumps, regions of almost constant frequency appear. The formation of frequency clusters is strongly correlated with defects that occur exclusively at the cluster boundaries. It is shown that the nonlinearity of the waves has a significant influence on the topology of the wave pattern.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.