Abstract
Characteristics of electromagnetic wave (EMW) propagation in microwave-assisted chemical reactions are critical to solve the problems of inhomogeneous heating and thermal runaway. By transforming the propagation equation of EMWs in simple polar-molecule reactions, the dispersive and time-varying characteristics of simple polar-molecule reactions are unfolded. Subsequently, we simulate the propagation of EMWs in simple polar-molecule reactions to disclose the effects of component concentration variation on frequency changes. Frequency changes can be neglected during the process of component concentration variation on the condition that the time scale of the variation is much greater than the wave period. If the time scale of the variation is comparable with or smaller than the wave period, frequency broadening or shift can be observed. Frequency changes are used to discuss the relationship between the time domain and frequency domain representation of the polarization in the reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.