Abstract
음향 상황 인지(acoustic context awareness)는 다양하게 발생되는 음원들로부터 어떠한 장소인지 또는 어떠한 사건이 발생하는지를 판단하는 기술로 음향 이벤트 검출 또는 인식 보다 한 단계 더 복잡한 문제이다. 기존의 상황인지 기술은 음향 이벤트 검출 또는 인식 기술에 기반하여 현재 상황을 인지하는 방법을 사용하고 있다. 하지만 이와 같은 접근 방법은 여러 음원이 동시에 발생하거나 유사한 음원이 발생하는 실제 환경에서 정확한 상황 판단이 어렵다. 특히 버스와 지하철은 승객들에 의한 잡음으로 상황을 인지하기 힘들다. 이러한 문제를 극복하기 위해 본 논문에서는 유사한 음향 이벤트가 발생하는 버스와 지하철 상황을 인식할 수 있는 Bag of Words 기반의 상황 인지 알고리즘을 연구하고 코드북 생성을 위한 특징벡터를 제안한다. 제안하는 특징벡터의 효용성은 Support Vector Machine을 이용한 실험을 통해 검증했다. Among acoustic signal analysis tasks, acoustic context awareness is one of the most formidable tasks in terms of complexity since it requires sophisticated understanding of individual acoustic events. In conventional context awareness methods, individual acoustic event detection or recognition is employed to generate a relevant decision on the impending context. However this approach may produce poorly performing decision results in practical situations due to the possibility of events occurring simultaneously or the acoustically similar events that are difficult to distinguish with each other. Particularly, the babble noise acoustic event occurring at a bus or subway environment may create confusion to context awareness task since babbling is similar in any environment. Therefore in this paper, a frequency-cepstral feature vector is proposed to mitigate the confusion problem during the situation awareness task of binary decisions: bus or metro. By employing the Support Vector Machine (SVM) as the classifier, the proposed feature vector scheme is shown to produce better performance than the conventional scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.