Abstract

The dielectric permittivity of propylene glycol/sulfolane binary mixtures have been determined at various temperatures in the frequency range of 0.02 ˂ν/GHz˂ 20 using open-ended coaxial probe method. The permitivity spectra of propylene glycol/sulfolane mixtures with an asymmetric shape is observed. The experimental dielectric permittivity, relaxation time values are used to obtain remaining excessive parameters such as excess permittivity (εE), deviation in refractive index (ΔnD) excess inverse relaxation time (1/τ)ε, Kirkwood effective correlation factor (geff) and active thermodynamic parameters. Redlich-Kister polynomial equation is used to fit the excessive dielectric parameters. The molecular interaction between propylene glycol and sulfolane binary mixtures is interpreted in terms of short and long-range interactions among the dipoles. The experimental dipole moment values are compared with the theoretical dipole moment values from DFT/B3LYP, MP2 methods. Natural bond orbital (NBO) analysis is performed on the optimized geometrical structure of the above system to understand molecular interaction between the binary mixtures in terms of hydrogen bonding. The chemical stability of the system is studied from the HOMO-LUMO calculations. The energy of H- bond interaction between propylene glycol and sulfolane binary mixture is calculated from the single point energy calculations, and the results are correlated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call