Abstract

We describe the measurement and modeling of amplitude noise and phase noise in ultra-high Q nanomechanical resonators made from stoichiometric silicon nitride. With quality factors exceeding 2 million, the resonators' noise performance is studied with high precision. We find that the amplitude noise can be well described by the thermomechanical model, however, the resonators exhibit sizable extra phase noise due to their intrinsic frequency fluctuations. We develop a method to extract the resonator frequency fluctuation of a driven resonator and obtain a noise spectrum with dependence, which could be attributed to defect motion with broadly distributed relaxation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.