Abstract

Natural hazard and risk assessments are predicated on a detailed understanding of the relationship between frequency and magnitude of the hazardous process under investigation. When information is sought from the deep past (i.e., several thousand years), continuous event records do not exist and the researcher has to rely on proxy data to develop the frequency–magnitude ( F– M) model. Such work is often prohibitively expensive and few well-researched examples for mass movement are available worldwide. The Cheekye fan is a desirable location for land development and has a depth and breadth of previous research unprecedented on any debris-flow fan in Canada. We pursued two principal strains of research to formulate a reliable F– M relationship. The first focuses on stratigraphic analyses combined with radiometric dating and dendrochronology to reconstruct a comprehensive picture of Holocene debris-flow activity. The second approach examines hydrological limitations of rock avalanche evolution into debris flows through either entrainment of saturated sediments or by failure of a landslide-generated dam and upstream impoundment. We thus hypothesize that debris flows from Cheekye River can be separated into two quasi-homogenous populations: those that are typically triggered by relatively small debris avalanches, slumps, or rock falls or simply by progressive bulking of in-stream erodible sediments; and those that are thought to result from transformation of rock avalanches. Our work suggests that debris flows exceeding some 3 million m 3 in volume are unlikely to reach the Cheekye fan as a result of limited water available to fully fluidize a rock avalanche. This analysis has also demonstrated that in order to arrive at reasonable estimates for the frequency and magnitude of debris flows on a complex alluvial fan significant multidisciplinary efforts are required. Without the significant precursor investigations and the additional efforts of this study, life and property may be jeopardized or the design of debris-flow mitigation may be subject to considerable and unquantifiable error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.