Abstract

This paper describes frequency modulation of a cw-dye laser to generate a frequency-discriminant dispersive signal by phase-sensitive detection of the optogalvanic signal in a lanthanum hollow cathode lamp. The frequencies of the six major hyperfine components in 5d26s4F9/2 (4121.572cm-1)----→579.13nm⁡5d26p4F9/2(21384.0cm-1) transition in 139La I were measured with an accuracy of 50 MHz, using a calibrated wavemeter after locking the cw-dye laser frequency to the dispersive error signal of the constituent hyperfine component. The measured hyperfine separations are found to be consistent with separations measured using the standard amplitude modulation technique and also with earlier reported results. The relative ease of the optical setup for locking of the cw-dye laser to optogalvanic spectra can be adapted to atomic physics applications for stabilization of laser frequency in the visible region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.