Abstract

The frequencies of lipopolysaccharide (LPS)-reactive B cells and their antibody specificity repertoire have been determined in the spleen and bone marrow (BM) of conventional (CV) and "antigen-free" C3H/HeCr mice of various ages. The antigen-free mice were germfree (GF)-raised and were fed an ultrafiltered solution of chemically defined (CD) low m.w. nutrients, and were thus devoid of exogenous antigenic stimulation. Spleen and BM cells were grown in a limiting dilution culture system that allows the growth and development of every newly formed LPS-reactive B cell into a clone of IgM-secreting cells which are capable of switching to other immunoglobulin (Ig) heavy chain isotypes (C-gene expression). The secretion of IgM and IgG1 was determined in the protein A plaque assay, whereas specific IgM antibody-secreting cells (V-gene expression) were detected in plaque assays specific for various heterologous erythrocytes and sheep red blood cells (SRBC) coupled with a number of different haptens. The absolute frequency of LPS-reactive B cells and their capacity to switch to IgG1-secretion was not significantly different in 8- to 12-wk-old and 52-wk-old GF-CD mice and their age-matched CV controls. Moreover, no differences were observed in the frequencies of antigen-specific B cells within the pool of LPS reactive B cells. These frequencies ranged from 1 in 20 to 1 in 50 for NIP4-SRBC and NNP2-SRBC, from 1 in 100 to 1 in 150 for NIP0.4-SRBC, from 1 in 50 to 1 in 100 for TNP30-SRBC, and from 1 in 1000 to 1 in 2000 for SRBC and horse red blood cells. Within the limitations of having determined the switching capacity of IgM to IgG1 only and having assessed only a minor fraction of the total B cell antibody-specificity repertoire, the data indicate that young and old GF-CD mice, although devoid of exogenous antigenic and/or mitogenic stimulation, generate B cells with a similar switching capacity and a similar IgM antibody specificity repertoire as CV mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.