Abstract

Optimal structural design of stiffened plate structure with multi order modal frequencies objective is discussed. It is a structural reverse design problem for the first several order modal frequencies to reach a set of given value. A new method based on bi-directional evolutionary structural optimization (BESO) and size optimization is presented. To solve the porous and irregular shape problem in the optimized structure, a regular shaped grid-like frame structure optimization model is established. The bars in the frame structure are regarded as basic unites of structure modification. The bars’ sensitivity is discussed, and applied to optimization process based on frequency sensitivity. The structural optimal design process can be described as follows: the frequencies are used as the target, the volume is considered as constraint, adjacent sensitivity redistribution method is adopted to suppress numerical instability. Then size optimization method is adopted to conduct detailed design. Finally this method is applied to a stiffened plate structure. Results show that the proposed approach is feasible to achieve given multi order modal frequencies. The optimized structure consists of regular bars, so a clear structure is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call