Abstract

Repetitive control (RC), which can track the periodic input or suppress the periodic disturbance with a zero steady-state error, is a promising control strategy for shunt active power filters (SAPF). However, the conventional RC (CRC) scheme will suffer a severe performance degradation caused by the grid frequency variations. In this article, a frequency-adaptive odd-harmonic repetitive control scheme with a single and fixed sampling rate is proposed for SAPF to deal with grid frequency variations and provide fast transient response for RC system. The frequency-adaptability of proposed repetitive control scheme can be implemented by updating the coefficients of the approximate expression for the delay unit in repetitive controller. The FIR filter based on Lagrange linear interpolation is used to transform the multirate repetitive control system into single-rate repetitive control system to address the problems caused by the multirate repetitive control system. Moreover, a fractional-order linear compensator with a simple structure is designed to compensate the magnitude and phase of the system accurately. Compared with other classical repetitive control strategies, the proposed repetitive control scheme can provide a better adaptation to the steady-state deviation and dynamic variation of grid frequency and ensure the control performance of SAPF system. Simulation and experimental results verify the effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.