Abstract
Freiman's theorem asserts, roughly speaking, if that a finite set in a torsion-free abelian group has small doubling, then it can be efficiently contained in (or controlled by) a generalised arithmetic progression. This was generalised by Green and Ruzsa to arbitrary abelian groups, where the controlling object is now a coset progression. We extend these results further to solvable groups of bounded derived length, in which the coset progressions are replaced by the more complicated notion of a ``coset nilprogression''. As one consequence of this result, any subset of such a solvable group of small doubling is is controlled by a set whose iterated products grow polynomially, and which are contained inside a virtually nilpotent group. As another application we establish a strengthening of the Milnor-Wolf theorem that all solvable groups of polynomial growth are virtually nilpotent, in which only one large ball needs to be of polynomial size. This result complements recent work of Breulliard-Green, Fisher-Katz-Peng, and Sanders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.