Abstract
Late embryos of the sea urchin survive freezing, at least for a short period of time, at −196 °C in the presence of a cryoprotectant. The freezing tolerance in glycolated embryos is greater in advanced developmental stages. High rates of both cooling and warming during a freezethaw sequence were more dangerous in one-cell embryos than in late ones. Both ethylene glycol and DMSO exerted a significant protection against freezing injury on embryos in all the stages after fertilization, but not on unfertilized egg cells. Cryopreservation of sea urchin sperm at −196 °C in the presence of 1.5 m ethylene glycol has been achieved for 3 days. The fertilizability of eggs inseminated by frozen-thawed sperm was more than two-thirds. Nearly all the eggs thus fertilized developed to normal gastrulae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.