Abstract

Results from laboratory experiments and microphysical modeling are presented that suggest a potential freezing nucleation mechanism for polar stratospheric cloud (PSC) particles above the water ice frost point (Tice). The mechanism requires very high HNO3 concentrations of about 58 wt% in the droplets, and leads to the freezing of nitric acid dihydrate (NAD) in a highly selective manner in the smallest droplets of an ensemble. In the stratosphere such liquid compositions are predicted to occur in aerosol droplets which are warmed adiabatically with rates of about +150 K/h from below 190 K to 194 K. Such rapid temperature changes have been observed in mountain leewaves that occur frequently in the stratosphere, clearly demonstrating the need for a stratospheric gravity wave climatology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call