Abstract

Leaves from cold-acclimated and from unhardened spinach plants (Spinacia oleracea L.) were subjected to a freezing/thawing procedure in which varying minimum temperatures were reached. Subsequently, the chlorophyll fluorescence induction signal (Kautsky phenomenon) and the light-induced apparent absorbance changes at 535 nm (light-scattering changes indicative of the proton gradient, and absorbance changes induced by the membrane potential) of the leaves were studied to obtain information on the course and mechanism of frost damage to the photosynthetic apparatus. Membrane energization as indicated by these signals was related in a complex way to the inactivation of CO2 assimilation due to the progressing impact of freezing: In the absence of CO2, the maximum energization of the thylakoids was progressively decreased. According to altered fluorescence signals, the electron transport system was affected in parallel. In the presence of CO2, energization frequently appeared increased when the leaves had been partially damaged, i.e., when the CO2 assimilation rates were lowered. The results suggest that the primary frost injury in chloroplasts of intact leaves consists of an inhibition of the energy conserving photosynthetic processes and, in addition, of a partial inactivation of the carbon reduction cycle. The pattern of freezing injury was no different in frost-hardened and unhardened leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.